منابع مشابه
Some Families of Graphs whose Domination Polynomials are Unimodal
Let $G$ be a simple graph of order $n$. The domination polynomial of $G$ is the polynomial $D(G, x)=sum_{i=gamma(G)}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$ and $gamma(G)$ is the domination number of $G$. In this paper we present some families of graphs whose domination polynomials are unimodal.
متن کاملDiscrete copulas - what they are
A statistical interpretation of recently introduced discrete copulas is given, and the composition of discrete copulas is clarified.
متن کاملsome families of graphs whose domination polynomials are unimodal
let $g$ be a simple graph of order $n$. the domination polynomial of $g$ is the polynomial $d(g, x)=sum_{i=gamma(g)}^{n} d(g,i) x^{i}$, where $d(g,i)$ is the number of dominating sets of $g$ of size $i$ and $gamma(g)$ is the domination number of $g$. in this paper we present some families of graphs whose domination polynomials are unimodal.
متن کاملPerlman and Wellner's Circular and Transformed Circular Copulas are Particular Beta and t Copulas
متن کامل
Chain Polynomials of Distributive Lattices are 75% Unimodal
It is shown that the numbers ci of chains of length i in the proper part L \ {0, 1} of a distributive lattice L of length l + 2 satisfy the inequalities c0 < . . . < c⌊l/2⌋ and c⌊3l/4⌋ > . . . > cl. This proves 75 % of the inequalities implied by the Neggers unimodality conjecture.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2003
ISSN: 0047-259X
DOI: 10.1016/s0047-259x(02)00030-1