Aquaporin-driven hydrogen peroxide transport: a case of molecular mimicry?
نویسندگان
چکیده
منابع مشابه
Membrane transport of hydrogen peroxide.
Hydrogen peroxide (H2O2) belongs to the reactive oxygen species (ROS), known as oxidants that can react with various cellular targets thereby causing cell damage or even cell death. On the other hand, recent work has demonstrated that H2O2 also functions as a signalling molecule controlling different essential processes in plants and mammals. Because of these opposing functions the cellular lev...
متن کاملMitochondrial aquaporin-8-mediated hydrogen peroxide transport is essential for teleost spermatozoon motility
Reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2), cause oxidative cell damage and inhibit sperm function. In most oviparous fishes that spawn in seawater (SW), spermatozoa may be exposed to harmful ROS loads associated with the hyperosmotic stress of axonemal activation and ATP synthesis from mitochondrial oxidative phosphorylation. However, it is not known how marine sperma...
متن کاملAquaporin-Mediated Water and Hydrogen Peroxide Transport Is Involved in Normal Human Spermatozoa Functioning
Different aquaporins (AQPs) are expressed in human sperm cells and with a different localization. Their function has been related to cell volume control in response to the osmotic changes encountered passing from the epididymal fluid to the cervical mucus or involved in the end stage of cytoplasm removal during sperm maturation. Recently, AQPs have also shown hydrogen peroxide (H₂O₂) permeabili...
متن کاملTransport of toxic metals by molecular mimicry.
Intracellular concentrations of essential metals are normally maintained within a narrow range, whereas the nonessential metals generally lack homeostatic controls. Some of the factors that contribute to metal homeostasis have recently been identified at the molecular level and include proteins that mediate import of essential metals from the extracellular environment, those that regulate deliv...
متن کاملMolecular evolution of hydrogen peroxide degrading enzymes
For efficient removal of intra- and/or extracellular hydrogen peroxide by dismutation to harmless dioxygen and water (2H(2)O(2) → O(2) + 2H(2)O), nature designed three metalloenzyme families that differ in oligomeric organization, monomer architecture as well as active site geometry and catalytic residues. Here we report on the updated reconstruction of the molecular phylogeny of these three ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: RSC Chemical Biology
سال: 2020
ISSN: 2633-0679
DOI: 10.1039/d0cb00160k