Approximations of conditional probability density functions in Lebesgue spaces via mixture of experts models
نویسندگان
چکیده
Mixture of experts (MoE) models are widely applied for conditional probability density estimation problems. We demonstrate the richness class MoE by proving denseness results in Lebesgue spaces, when inputs and outputs variables both compactly supported. further prove an almost uniform convergence result input is univariate. Auxiliary lemmas proved regarding soft-max gating function class, their relationships to Gaussian functions.
منابع مشابه
Conditional Probability Spaces
Improper priors are used frequently, but often formally and without reference to a sound theoretical basis. The present paper demonstrates that Kolmogorov’s (1933) formulation of probability theory admits a minimal generalization which includes improper priors and a general Bayes theorem. The resulting theory is closely related to the theory of conditional probability spaces formulated by Renyi...
متن کاملthe application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)
هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...
15 صفحه اولa contrastive study of rhetorical functions of citation in iranian and international elt scopus journals
writing an academic article requires the researchers to provide support for their works by learning how to cite the works of others. various studies regarding the analysis of citation in m.a theses have been done, while little work has been done on comparison of citations among elt scopus journal articles, and so the dearth of research in this area demands for further investigation into citatio...
Functional Models and Probability Density Functions
There exist many approaches to discern a functional relationship between two variables. A functional model is useful for two reasons: Firstly, if the function is a relatively simple model in the plane, it provides us with qualitative information about the relationship. Secondly, given a fixed value for one variable, the other one can be calculated as a means for prediction. In this paper an app...
متن کاملDomain Adaptation of Conditional Probability Models Via Feature Subsetting
The goal in domain adaptation is to train a model using labeled data sampled from a domain different from the target domain on which the model will be deployed. We exploit unlabeled data from the target domain to train a model that maximizes likelihood over the training sample while minimizing the distance between the training and target distribution. Our focus is conditional probability models...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Distributions and Applications
سال: 2021
ISSN: ['2195-5832']
DOI: https://doi.org/10.1186/s40488-021-00125-0