Approximation of Mixed Euler-Lagrange σ -Cubic-Quartic Functional Equation in Felbin’s Type f-NLS
نویسندگان
چکیده
منابع مشابه
Cubic-Quartic Functional Equation
and Applied Analysis 3 In 2008, Gordji et al. 17 provided the solution as well as the stability of a mixed type cubic-quartic functional equation. We only mention here the papers 19, 32, 33 concerning the stability of the mixed type functional equations. In this paper, we deal with the following general cubic-quartic functional equation: f ( x ky ) f ( x − ky) k2(f(x y) f(x − y)) 2 ( 1 − k2 ) f...
متن کاملSolution and Stability of a Mixed Type Cubic and Quartic Functional Equation in Quasi-Banach Spaces
and Applied Analysis 3 vector spaces X and Y is a solution of 1.5 if and only if there exists a unique function C : X × X × X → Y such that f x C x, x, x for all x ∈ X, and C is symmetric for each fixed one variable and is additive for fixed two variables see also 20 . The quartic functional equation 1.6 was introduced by Rassias 21 in 2000 and then in 2005 was employed by Park and Bae 22 and o...
متن کاملStability of a mixed type quadratic, cubic and quartic functional equation
In this paper, we obtain the general solution and the generalized Hyers-Ulam Rassias stability of the functional equation 3(f(x+ 2y) + f(x− 2y)) = 12(f(x + y) + f(x− y)) + 4f(3y)− 18f(2y) + 36f(y)− 18f(x).
متن کاملOrthogonal stability of mixed type additive and cubic functional equations
In this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$ is orthogonality in the sense of Ratz.
متن کاملApproximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras
Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces
سال: 2021
ISSN: 2314-8888,2314-8896
DOI: 10.1155/2021/8068673