Approximation by Nörlund and Riesz means in weighted Lebesgue space with variable exponent
نویسندگان
چکیده
منابع مشابه
Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces ∗
We prove optimal integrability results for solutions of the p(·)-Laplace equation in the scale of (weak) Lebesgue spaces. To obtain this, we show that variable exponent Riesz and Wolff potentials map L to variable exponent weak Lebesgue spaces.
متن کاملWeighted Inequalities for Bochner-riesz Means in the Plane
for some fixed large N0; we shall call such weights admissible. Rubio de Francia [11] showed that for every w ∈ L(R) there is a nonnegative W ∈ L(R) such that ‖W‖2 ≤ Cλ‖w‖2, Cλ < ∞ if λ > 0, and the analogous weighted norm inequality for S t holds uniformly in t. He used methods related to factorization theory of operators and the proof gave no information on how to construct w from W . In [3] ...
متن کاملThree solutions to a p(x)-Laplacian problem in weighted-variable-exponent Sobolev space
In this paper, we verify that a general p(x)-Laplacian Neumann problem has at least three weak solutions, which generalizes the corresponding result of the reference [R. A. Mashiyev, Three Solutions to a Neumann Problem for Elliptic Equations with Variable Exponent, Arab. J. Sci. Eng. 36 (2011) 1559-1567].
متن کاملWeighted Means in Stochastic Approximation of Minima∗
Weighted averages of Kiefer–Wolfowitz-type procedures, which are driven by larger step lengths than usual, can achieve the optimal rate of convergence. A priori knowledge of a lower bound on the smallest eigenvalue of the Hessian matrix is avoided. The asymptotic mean squared error of the weighted averaging algorithm is the same as would emerge using a Newton-type adaptive algorithm. Several di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
سال: 2019
ISSN: 1303-5991
DOI: 10.31801/cfsuasmas.460449