Approximation by interval-decomposables and interval resolutions of persistence modules
نویسندگان
چکیده
In topological data analysis, two-parameter persistence can be studied using the representation theory of 2d commutative grid, tensor product two Dynkin quivers type A. a previous work, we defined interval approximations restrictions to essential vertices intervals together with Mobius inversion. this consider homological resolutions, and show that resolution global dimension is finite for posets it equal maximum dimensions Auslander-Reiten translates representations. fact, latter equality, obtained general formula in setting finite-dimensional algebras resolutions relative generator-cogenerator. Furthermore, ladder case, by suitable modification our approximation, provide linking conceptions approximation.
منابع مشابه
Stability of higher-dimensional interval decomposable persistence modules
The algebraic stability theorem for pointwise finite dimensional (p.f.d.) R-persistence modules is a central result in the theory of stability for persistence modules. We present a stability theorem for n-dimensional rectangle decomposable p.f.d. persistence modules up to a constant (2n− 1) that is a generalization of the algebraic stability theorem. We give an example to show that the bound ca...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولUniversal Approximation of Interval-valued Fuzzy Systems Based on Interval-valued Implications
It is firstly proved that the multi-input-single-output (MISO) fuzzy systems based on interval-valued $R$- and $S$-implications can approximate any continuous function defined on a compact set to arbitrary accuracy. A formula to compute the lower upper bounds on the number of interval-valued fuzzy sets needed to achieve a pre-specified approximation accuracy for an arbitrary multivariate con...
متن کاملA new interval-valued approximation of interval-valued fuzzy numbers
In this paper, we proposed a new interval-valued approximation of interval-valued fuzzy numbers, which is the best one with respect to a certain measure of distance between interval-valued fuzzy numbers. Also, a set of criteria for interval-valued approximation operators is suggested.
متن کاملEvaluation and interval approximation of fuzzy quantities
In this paper we present a general framework to face the problem of evaluate fuzzy quantities. A fuzzy quantity is a fuzzy set that may be non normal and/or non convex. This new formulation contains as particular cases the ones proposed by Fortemps and Roubens [7], Yager and Filev [12, 13] and follows a completely different approach. It starts with idea of “interval approximation of a fuzzy num...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2023
ISSN: ['1873-1376', '0022-4049']
DOI: https://doi.org/10.1016/j.jpaa.2023.107397