Approximating Euler products and class number computation in algebraic function fields
نویسندگان
چکیده
منابع مشابه
Approximating Euler Products and Class Number Computation in Algebraic Function Fields
We provide a number of results that can be used to derive approximations for the Euler product representation of the zeta function of an arbitrary algebraic function field. Three such approximations are given here. Our results have two main applications. They lead to a computationally suitable algorithm for computing the class number of an arbitrary function field. The ideas underlying the clas...
متن کاملPrime Number Theorem for Algebraic Function Fields
Elementary proofs of the abstract prime number theorem of the form A(w) = qm + 0(qmm~i) for algebraic function fields are given. The proofs use a refinement of a tauberian theorem of Bombieri. 0. Introduction The main purpose of this paper is to give elementary proofs of the abstract prime number theorem for algebraic function fields (henceforth, the P.N.T.) which was established in the author'...
متن کاملClass number approximation in cubic function fields
A central problem in number theory and algebraic geometry is the determination of the size of the group of rational points on the Jacobian of an algebraic curve over a finite field. This question also has applications to cryptography, since cryptographic systems based on algebraic curves generally require a Jacobian of non-smooth order in order to foil certain types of attacks. There a variety ...
متن کاملComputation of the Euclidean minimum of algebraic number fields
We present an algorithm to compute the Euclidean minimum of an algebraic number field, which is a generalization of the algorithm restricted to the totally real case described by Cerri ([7]). With a practical implementation, we obtain unknown values of the Euclidean minima of algebraic number fields of degree up to 8 in any signature, especially for cyclotomic fields, and many new examples of n...
متن کاملAlgebraic number fields
By an algebraic number field we mean a subfield of the algebraic numbers, or an isomorphic copy of such a field. Here we consider questions related to the complexity of determining isomorphism between algebraic number fields. We characterize the algebraic number fields with computable copies. For computable algebraic number fields, we give the complexity of the index sets. We show that the isom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2010
ISSN: 0035-7596
DOI: 10.1216/rmj-2010-40-5-1689