Approximate ternary quadratic derivations on ternary Banach algebras and C*-ternary rings
نویسندگان
چکیده
منابع مشابه
Lie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras
Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...
متن کاملNearly Ternary Quadratic Higher Derivations on Non-Archimedean Ternary Banach Algebras: A Fixed Point Approach
and Applied Analysis 3 for x, y, z ∈ A. A Banach non-Archimedean ternary algebra is a normed non-Archimedean ternary algebra such that the normed non-Archimedean vector space with norm ‖ · ‖ is complete. The ternary algebras have been studied in nineteenth century. Their structures appeared more or less naturally in various domains of mathematical physics and data processing. The discovery of t...
متن کاملNearly higher ternary derivations in Banach ternary algebras :An alternative fixed point approach
We say a functional equation () is stable if any function g satisfying the equation () approximatelyis near to true solution of (). Using xed point methods, we investigate approximately higherternary derivations in Banach ternary algebras via the Cauchy functional equationf(1x + 2y + 3z) = 1f(x) + 2f(y) + 3f(z) :
متن کاملBounded Approximate Identities in Ternary Banach Algebras
and Applied Analysis 3 Step 1. Let F {a} be singleton. Then, there are u ∈ U and v ∈ V such that ‖uv‖ < M, and ‖ u, v, a − a‖ < M 1 . 2.2 Letting w uv ◦ uv, then ‖ uv ◦ uv, a − a‖ ‖ u, v, u, v, a − a − u, v, a − a ‖ < . 2.3 Step 2. Let F {a1, a2}. There is a u1, v1 ∈ U × V such that ‖ u1, v1, a1 − a1‖ < / 1 M , and for u1, v1, a2 − a2 ∈ A there is a u2, v2 ∈ U × V such that ‖ u2, v2, u1, v1, a2...
متن کاملHomomorphisms and Derivations in C-Ternary Algebras
and Applied Analysis 3 in the middle variable, and associative in the sense that x, y, z,w, v x, w, z, y , v x, y, z , w, v , and satisfies ‖ x, y, z ‖ ≤ ‖x‖ · ‖y‖ · ‖z‖ and ‖ x, x, x ‖ ‖x‖ see 45, 47 . Every left Hilbert C∗-module is a C∗-ternary algebra via the ternary product x, y, z : 〈x, y〉z. If a C∗-ternary algebra A, ·, ·, · has an identity, that is, an element e ∈ A such that x x, e, e ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2012
ISSN: 1687-1847
DOI: 10.1186/1687-1847-2012-11