Approximate Sparsity Pattern Recovery: Information-Theoretic Lower Bounds
نویسندگان
چکیده
منابع مشابه
Efficient Sparsity Pattern Recovery
The theory of compressed sensing shows that sparsity pattern (or support) of a sparse signal can be recovered from a small number of appropriate linear projections (samples). Unfortunately, as soon as noise is added, the number of required samples exceeds the full signal dimension, rendering compressed sensing ineffective. In recent work, we have shown that this can be fixed if a small distorti...
متن کاملA Sharp Sufficient Condition for Sparsity Pattern Recovery
Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits of the perfect support set recovery. To reduce this gap, in this paper, the sufficient con...
متن کاملInformation-theoretic lower bounds for convex optimization with erroneous oracles
We consider the problem of optimizing convex and concave functions with access to an erroneous zeroth-order oracle. In particular, for a given function x → f(x) we consider optimization when one is given access to absolute error oracles that return values in [f(x) − , f(x) + ] or relative error oracles that return value in [(1− )f(x), (1 + )f(x)], for some > 0. We show stark information theoret...
متن کاملLower Bounds for Approximate LDC
We study an approximate version of q-query LDCs (Locally Decodable Codes) over the real numbers and prove lower bounds on the encoding length of such codes. A q-query (α, δ)approximate LDC is a set V of n points in R so that, for each i ∈ [d] there are Ω(δn) disjoint q-tuples (u1, . . . ,uq) in V so that span(u1, . . . ,uq) contains a unit vector whose i’th coordinate is at least α. We prove ex...
متن کاملLower Bounds for Approximate LDCs
We study an approximate version of q-query LDCs (Locally Decodable Codes) over the real numbers and prove lower bounds on the encoding length of such codes. A q-query (α, δ)approximate LDC is a set V of n points in R so that, for each i ∈ [d] there are Ω(δn) disjoint q-tuples (u1, . . . ,uq) in V so that span(u1, . . . ,uq) contains a unit vector whose i’th coordinate is at least α. We prove ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2013
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2013.2253852