Applying the Wang-Landau algorithm to lattice gauge theory
نویسندگان
چکیده
منابع مشابه
The Landau gauge lattice ghost propagator in stochastic perturbation theory
We present oneand two-loop results for the ghost propagator in Landau gauge calculated in Numerical Stochastic Perturbation Theory (NSPT). The one-loop results are compared with available standard Lattice Perturbation Theory in the infinite-volume limit. We discuss in detail how to perform the different necessary limits in the NSPT approach and discuss a recipe to treat logarithmic terms by int...
متن کاملUnderstanding and improving the Wang-Landau algorithm.
We present a mathematical analysis of the Wang-Landau algorithm, prove its convergence, and identify sources of errors and strategies for optimization. In particular, we found the histogram increases uniformly with small fluctuations after a stage of initial accumulation, and the statistical error is found to scale as square root of (ln f) with the modification factor f . This has implications ...
متن کاملAn algorithm for Landau gauge fixing in Lattice QCD
An algorithm for gauge fixing to the minimal Landau gauge in lattice QCD is described. The method, a combination of an evolutionary algorithm with a steepest descent method, is able to solve the problem of the nonperturbative gauge fixing. The performance of the combined algorithm is investigated on 8, β = 5.7, and 16, β = 6.0, lattice SU(3) gauge configurations.
متن کاملGeneralization of the Wang-Landau method for off-lattice simulations.
We present a rigorous derivation for off-lattice implementations of the so-called "random-walk" algorithm recently introduced by Wang and Landau [Phys. Rev. Lett. 86, 2050 (2001)]. Originally developed for discrete systems, the algorithm samples configurations according to their inverse density of states using Monte Carlo moves; the estimate for the density of states is refined at each simulati...
متن کاملThe lattice ghost propagator in Landau gauge up to three loops using Numerical Stochastic Perturbation Theory
We complete our high-accuracy studies of the lattice ghost propagator in Landau gauge in Numerical Stochastic Perturbation Theory up to three loops. We present a systematic strategy which allows to extract with sufficient precision the non-logarithmic parts of logarithmically divergent quantities as a function of the propagator momentum squared in the infinite-volume and a → 0 limits. We find a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 2008
ISSN: 1550-7998,1550-2368
DOI: 10.1103/physrevd.78.074503