Applying polynomial decoupling methods to the polynomial NARX model

نویسندگان

چکیده

System identification uses measurements of a dynamic system's input and output to reconstruct mathematical model for that system. These can be mechanical, electrical, physiological, among others. Since most the systems around us exhibit some form nonlinear behavior, system techniques are tools will help gain better understanding our surroundings potentially let improve their performance. One is often used represent polynomial NARX model, an equation error where function past inputs outputs. That said, major disadvantage with number parameters increases rapidly increasing order. Furthermore, black-box therefore difficult interpret. This paper discusses decoupling algorithm substitutes multivariate transformation matrix followed by bank univariate polynomials. decreases significantly also imposes structure on model. non-convex optimization required this technique, initialization important factor consider. In developed in conjunction several different techniques. The resulting algorithms applied two benchmark problems: measurement data from Silver-Box simulation Bouc-Wen friction performance evaluated validation signals both prediction.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Polynomial Bounds for Decoupling, with Applications

Let f(x) = f(x1, . . . , xn) = ∑ |S|≤k aS ∏ i∈S xi be an n-variate real multilinear polynomial of degree at most k, where S ⊆ [n] = {1, 2, . . . , n}. For its one-block decoupled version,

متن کامل

Polynomial Supertree Methods Revisited

Supertree methods allow to reconstruct large phylogenetic trees by combining smaller trees with overlapping leaf sets into one, more comprehensive supertree. The most commonly used supertree method, matrix representation with parsimony (MRP), produces accurate supertrees but is rather slow due to the underlying hard optimization problem. In this paper, we present an extensive simulation study c...

متن کامل

Combinatorial Methods: from Groups to Polynomial Algebras

Combinatorial methods (or methods of elementary transformations) came to group theory from low-dimensional topology in the beginning of the century. Soon after that, combinatorial group theory became an independent area with its own powerful techniques. On the other hand, combinatorial commutative algebra emerged in the sixties, after Buchberger introduced what is now known as Gröbner bases. Th...

متن کامل

Polynomial Methods in Combinatorial Geometry

iii 1 The Erdős Distance Problem 1 2 Incidence Geometry 5 2.1 The distinct distances incidence problem . . . . . . . . . . . . . . . . . 5 2.2 The geometry of Elekes’ incidence problem . . . . . . . . . . . . . . . . 11 2.3 Ruled Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Dvir’s Polynomial Method 17 3.1 The Polynomial Method . . . . . . . . . . . . . . . . . . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mechanical Systems and Signal Processing

سال: 2021

ISSN: ['1096-1216', '0888-3270']

DOI: https://doi.org/10.1016/j.ymssp.2020.107134