Applying Deep Learning to C# Call Sequence Synthesis
نویسندگان
چکیده
منابع مشابه
Applying Deep Learning to the Newsvendor Problem
The newsvendor problem is one of the most basic and widely applied inventory models. There are numerous extensions of this problem. One important extension is the multi-item newsvendor problem, in which the demand of each item may be correlated with that of other items. If the joint probability distribution of the demand is known, the problem can be solved analytically. However, approximating t...
متن کاملApplying Deep Learning to Basketball Trajectories
One of the emerging trends for sports analytics is the growing use of player and ball tracking data. A parallel development is deep learning predictive approaches that use vast quantities of data with less reliance on feature engineering. This paper applies recurrent neural networks in the form of sequence modeling to predict whether a three-point shot is successful. The models are capable of l...
متن کاملApplying Inductive Program Synthesis to Macro Learning
The goal of this paper is to demonstrate that inductive progrwn synthesis can be applied to learning macrooperators from planning experience. We define macros as recursive program schemes (RPSs). An RPS represents the complete subgoal structure of a given problem domain with arbitrary complexity (e. g., rocket transportation problem with n objects), that is, it represents domain specific contro...
متن کاملApplying deep learning to classify pornographic images and videos
It is no secret that pornographic material is now a one-clickaway from everyone, including children and minors. General social media networks are striving to isolate adult images and videos from normal ones. Intelligent image analysis methods can help to automatically detect and isolate questionable images in media. Unfortunately, these methods require vast experience to design the classifier i...
متن کاملBest Practices for Applying Deep Learning to Novel Applications
This report is targeted to groups who are subject matter experts in their application but deep learning novices. It contains practical advice for those interested in testing the use of deep neural networks on applications that are novel for deep learning. We suggest making your project more manageable by dividing it into phases. For each phase this report contains numerous recommendations and i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Institute for System Programming of the RAS
سال: 2018
ISSN: 2079-8156,2220-6426
DOI: 10.15514/ispras-2018-30(3)-5