Application of Monte Carlo Methods in Transfer Problems
نویسندگان
چکیده
منابع مشابه
Monte Carlo Methods in Geophysical Inverse Problems
[1] Monte Carlo inversion techniques were first used by Earth scientists more than 30 years ago. Since that time they have been applied to a wide range of problems, from the inversion of free oscillation data for whole Earth seismic structure to studies at the meter-scale lengths encountered in exploration seismology. This paper traces the development and application of Monte Carlo methods for ...
متن کاملMonte Carlo Methods for Adaptive Disorder Problems
We develop a Monte Carlo method to solve continuous-time adaptive disorder problems. An unobserved signal X undergoes a disorder at an unknown time to a new unknown level. The controller’s aim is to detect and identify this disorder as quickly as possible by sequentially monitoring a given observation process Y . We adopt a Bayesian setup that translates the problem into a two-step procedure of...
متن کاملMonte Carlo and quasi-Monte Carlo methods
Monte Carlo is one of the most versatile and widely used numerical methods. Its convergence rate, O(N~^), is independent of dimension, which shows Monte Carlo to be very robust but also slow. This article presents an introduction to Monte Carlo methods for integration problems, including convergence theory, sampling methods and variance reduction techniques. Accelerated convergence for Monte Ca...
متن کاملQuasi-Monte Carlo and Multilevel Monte Carlo Methods for Computing Posterior Expectations in Elliptic Inverse Problems∗
We are interested in computing the expectation of a functional of a PDE solution under a Bayesian posterior distribution. Using Bayes’s rule, we reduce the problem to estimating the ratio of two related prior expectations. For a model elliptic problem, we provide a full convergence and complexity analysis of the ratio estimator in the case where Monte Carlo, quasi-Monte Carlo, or multilevel Mon...
متن کاملDomain Decomposition Solution of Elliptic Boundary-Value Problems via Monte Carlo and Quasi-Monte Carlo Methods
Domain decomposition of two-dimensional domains on which boundary-value elliptic problems are formulated, is accomplished by probabilistic (Monte Carlo) as well as by quasi-Monte Carlo methods, generating only few interfacial values and interpolating on them. Continuous approximations for the trace of solution are thus obtained, to be used as boundary data for the sub-problems. The numerical tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Astronomical Union Colloquium
سال: 1970
ISSN: 0252-9211
DOI: 10.1017/s0252921100151206