Application of Legendre–Bernstein basis transformations to degree elevation and degree reduction
نویسندگان
چکیده
منابع مشابه
Degree Elevation and Reduction of Periodic Surfaces
Recently we developed a periodic surface model to assist the construction of nano structures parametrically for computer-aided nano-design. In this paper, we study the properties of periodic surfaces for degree elevation and reduction. Degree elevation approaches are developed to incrementally increase shape complexities, including native, variational, and boundary constrained elevations. A gen...
متن کاملDegree Elevation of Interval Bezier Curves Using Legendre-Bernstein Basis Transformations
This paper presents a simple matrix form for degree elevation of interval Bezier curve using LegendreBernstein basis transformations. The four fixed Kharitonov's polynomials (four fixed Bezier curves) associated with the original interval Bezier curve are obtained. These four fixed Bezier curves are expressed in terms of the Legendre polynomials. The process of degree elevations r times are app...
متن کاملA simple matrix form for degree reduction of Bézier curves using Chebyshev-Bernstein basis transformations
We use the matrices of transformations between Chebyshev and Bernstein basis and the matrices of degree elevation and reduction of Chebyshev polynomials to present a simple and efficient method for r times degree elevation and optimal r times degree reduction of Bézier curves with respect to the weighted L2-norm for the interval [0,1], using the weight function wðxÞ 1⁄4 1= ffiffiffiffiffiffiffi...
متن کاملConvergence of subdivision and degree elevation
This paper presents a short, simple, and general proof showing that the control polygons generated by subdivision and degree elevation converge to the underlying splines, box-splines, or multivariate B~zier polynomials, respectively. The proof is based only on a Taylor expansion. Then the results are carried over to rational curves and surfaces. Finally, an even shorter but as simple proof is p...
متن کاملDegree Reduction of Disk Wang-Bézier Type Generalized Ball Curves
A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Aided Geometric Design
سال: 2002
ISSN: 0167-8396
DOI: 10.1016/s0167-8396(02)00164-4