Application of he’s fractional derivative and fractional complex transform for time fractional Camassa-Holm equation
نویسندگان
چکیده
منابع مشابه
Analytical Approximate Solution For Nonlinear Time-Space Fractional Fornberg-Whitham Equation By Fractional Complex Transform
In this article, fractional complex transform with optimal homotopy analysis method (OHAM) is used to obtain numerical and analytical solutions for the nonlinear time-space fractional Fornberg-Whitham. Fractional complex transform is proposed to convert time-space fractional Fornberg-Whitham equation to the nonlinear ordinary differential equations and then applied OHAM to the new obtained equa...
متن کاملApplication of fractional-order Bernoulli functions for solving fractional Riccati differential equation
In this paper, a new numerical method for solving the fractional Riccati differential equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon fractional-order Bernoulli functions approximations. First, the fractional-order Bernoulli functions and their properties are presented. Then, an operational matrix of fractional order integration...
متن کاملFractional Derivative as Fractional Power of Derivative
Definitions of fractional derivatives as fractional powers of derivative operators are suggested. The Taylor series and Fourier series are used to define fractional power of self-adjoint derivative operator. The Fourier integrals and Weyl quantization procedure are applied to derive the definition of fractional derivative operator. Fractional generalization of concept of stability is considered.
متن کاملPositive time fractional derivative
In mathematical modeling of the non-squared frequency-dependent diffusions, also known as the anomalous diffusions, it is desirable to have a positive real Fourier transform for the time derivative of arbitrary fractional or odd integer order. The Fourier transform of the fractional time derivative in the Riemann-Liouville and Caputo senses, however, involves a complex power function of the fra...
متن کاملFractional Ince equation with a Riemann-Liouville fractional derivative
We extend the classical treatment of the Ince equation to include the effect of a fractional derivative term of order a > 0 and amplitude c. A Fourier expansion is used to determine the eigenvalue curves að Þ in function of the parameter , the stability domains, and the periodic stable solutions of the fractional Ince equation. Two important observations are the detachment of the eigenvalue cur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Thermal Science
سال: 2020
ISSN: 0354-9836,2334-7163
DOI: 10.2298/tsci190930450a