Application of Back-Propagation Neural Network in the Post-Blast Re-Entry Time Prediction

نویسندگان

چکیده

Predicting the post-blast re-entry time precisely can improve productivity and reduce accidents significantly. The empirical formulas for prediction are practical to implement, but lack accuracy. In this study, a novel method based on back-propagation neural network (BPNN) was proposed tackle drawbacks. A numerical model constructed 300 points of sample data were recorded, with consideration fresh air volume, occupational exposure limit, toxic gas volume per kg explosives roadway length. BPNN six neurons in hidden layer then developed performance discussed terms four indicators, namely, root mean square error (RMSE), coefficient determination (R2), absolute (MAE) sum squares (SSE). Furthermore, one representative formula introduced calibrated comparison. obtained results showed that had more remarkable performance, RMSE 21.45 (R2: 0.99, MAE: 10.78 SSE: 40934), compared formula, 76.89 0.90, 42.06 526147). Hence, is superior predicting time. For better application, it embedded into software.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Back-Propagation Neural Network in Horoscope Prediction

In this study a back-propagation neural network model is designed and its parameters are optimized for prediction of horoscope to identify a person type. Person type is a dynamic system based on the planet system. It is found that the backpropagation neural network is capable to predict the person type by learning planet dataset. The model is trained up to model error (i.e., mean square error) ...

متن کامل

On the use of back propagation and radial basis function neural networks in surface roughness prediction

Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...

متن کامل

network of phonological rules in lori dialect of andimeshk: a study within the framework of post-generative approach.

پژوهش حاضر ارائه ی توصیفی است از نظام آوایی گویش لری شهر اندیمشک، واقع در شمال غربی استان خوزستان. چهارچوب نظری این پژوهش، انگاره ی پسازایشی جزءمستقل می باشد. این پایان نامه شامل موارد زیر است: -توصیف آواهای این گویش به صورت آواشناسی سنتی و در قالب مختصه های زایشی ممیز، همراه با آوانوشته ی تفصیلی؛ -توصیف نظام آوایی گویش لری و قواعد واجی آن در چهارچوب انگاره ی پسازایشی جزءمستقل و معرفی برهم کن...

A Survey on Crop Prediction using Back Propagation Neural Network

The aim of this research is to develop a farmer prediction system to identify crop suitable for particular soil. To achieve this Neural Network should be trained to perform correct prediction for farmers. After the network has been properly trained, it can be used to identify the crop suitable for particular type of soil. The Artificial neural networks are relatively crude electronic networks o...

متن کامل

Crop Prediction System Using Enhanced Back Propagation Neural Network

The intend of this research is to develop and enhance a prediction system. This prediction system is useful to predict the crop that is suitable for a particular kind of soil. To realize it Neural Network is trained first in order to make accurate predictions. After training, network is capable of identifying the proper crop for particular soil. An Artificial neural networks is a simple electro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Knowledge

سال: 2023

ISSN: ['2809-4042', '2809-4034']

DOI: https://doi.org/10.3390/knowledge3020010