Apolipoprotein A-V N-terminal Domain Lipid Interaction Properties in Vitro Explain the Hypertriglyceridemic Phenotype Associated with Natural Truncation Mutants
نویسندگان
چکیده
منابع مشابه
Apolipoprotein A-V N-terminal domain lipid interaction properties in vitro explain the hypertriglyceridemic phenotype associated with natural truncation mutants.
The N-terminal 146 residues of apolipoprotein (apo) A-V adopt a helix bundle conformation in the absence of lipid. Because similarly sized truncation mutants in human subjects correlate with severe hypertriglyceridemia, the lipid binding properties of apoA-V(1-146) were studied. Upon incubation with phospholipid in vitro, apoA-V(1-146) forms reconstituted high density lipoproteins 15-17 nm in d...
متن کاملGene transfer of apolipoprotein A-V improves the hypertriglyceridemic phenotype of apoa5 (-/-) mice.
OBJECTIVE Apolipoprotein (apo) A-V is a low abundance protein with a profound influence on plasma triacylglycerol levels. In human populations, single nucleotide polymorphisms and mutations in APOA5 positively correlate with hypertriglyceridemia. As an approach to preventing the deleterious effects of chronic hypertriglyceridemia, apoA-V gene therapy has been pursued. METHODS AND RESULTS Reco...
متن کاملInteraction of the N-terminal domain of apolipoprotein E4 with heparin.
Apolipoprotein E (apoE) is an important lipid-transport protein in human plasma and brain. It has three common isoforms (apoE2, apoE3, and apoE4). ApoE is a major genetic risk factor in heart disease and in neurodegenerative disease, including Alzheimer's disease. The interaction of apoE with heparan sulfate proteoglycans plays an important role in lipoprotein remnant uptake and likely in ather...
متن کاملMolecular Dynamics Study of the N-terminal Domain of Apolipoprotein E on a Mimetic-Lipid Surface
Lipid-protein interactions are ubiquitous to living systems. The protein/lipid interface is extremely important but little is known at this time about the specific interactions at these interfaces. In particular the molecular mechanism of apolipoprotein recruitment to lipoprotein surfaces and its subsequent structural alteration is not well understood. N-terminal domain of human apolipoprotein ...
متن کاملLipid binding-induced conformational changes in the N-terminal domain of human apolipoprotein E.
The N-terminal domain of human apolipoprotein E3 (apoE3) adopts an elongated, globular four helix bundle conformation in the lipid-free state. Upon lipid binding, the protein is thought to undergo a significant conformational change that is essential for manifestation of its low density lipoprotein receptor recognition properties. We have used fluorescence resonance energy transfer (FRET) to ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2009
ISSN: 0021-9258
DOI: 10.1074/jbc.m109.040972