ANTI-HOLOMORPHIC INVOLUTIONS AND SPHERICAL SUBGROUPS OF REDUCTIVE GROUPS
نویسندگان
چکیده
منابع مشابه
Abelian Unipotent Subgroups of Reductive Groups
Let G be a connected reductive group defined over an algebraically closed field k of characteristic p > 0. The purpose of this paper is two-fold. First, when p is a good prime, we give a new proof of the “order formula” of D. Testerman for unipotent elements in G; moreover, we show that the same formula determines the p-nilpotence degree of the corresponding nilpotent elements in the Lie algebr...
متن کاملElementary Subgroups of Isotropic Reductive Groups
Let G be a not necessarily split reductive group scheme over a commutative ring R with 1. Given a parabolic subgroup P of G, the elementary group EP (R) is defined to be the subgroup of G(R) generated by UP (R) and UP−(R), where UP and UP− are the unipotent radicals of P and its opposite P −, respectively. It is proved that if G contains a Zariski locally split torus of rank 2, then the group E...
متن کاملOn Rationality Properties of Involutions of Reductive Groups
Introduction. Let k be a field of characteristic not two and G a connected linear reductive k-group. By a k-involution θ of G, we mean a k-automorphism θ of G of order two. For k = R, C or an algebraically closed field, such involutions have been extensively studied emerging from different interests. As manifested in [8, 18, 28], the interactions with the representation theory of reductive grou...
متن کاملSpecial Involutions and Bulky Parabolic Subgroups in Finite Coxeter Groups
In [3] Felder and Veselov considered the standard and twisted actions of a finite Coxeter group W on the cohomology H(MW ) of the complement of the complexified hyperplane arrangement MW of W . The twisted action is obtained by combining the standard action with complex conjugation; we refer the reader to [3] for precise statements. In a case by case argument, Felder and Veselov obtain a formul...
متن کاملInvolutions of reductive Lie algebras
Let G be a reductive group over a field of characteristic 6= 2, let g = Lie(G), let θ be an involutive automorphism of G and let g = k⊕p be the associated symmetric space decomposition. For k = C, Kostant and Rallis studied [17] properties of orbits, centralizers, and invariants related to the (−1) eigenspace p. In this paper, we generalise [17] to the case of good positive characteristic. Amon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transformation Groups
سال: 2015
ISSN: 1083-4362,1531-586X
DOI: 10.1007/s00031-015-9334-9