Anomaly detection system based on sparse signal representation
نویسندگان
چکیده
منابع مشابه
A New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملSparse representation-based ECG signal enhancement and QRS detection.
Electrocardiogram (ECG) signal enhancement and QRS complex detection is a critical preprocessing step for further heart disease analysis and diagnosis. In this paper, we propose a sparse representation-based ECG signal enhancement and QRS complex detection algorithm. Unlike traditional Fourier or wavelet transform-based methods, which use fixed bases, the proposed algorithm models the ECG signa...
متن کاملEpileptic Electroencephalogram Signal Classification based on Sparse Representation
Epilepsy seizure detection in Electroencephalogram (EEG) is a major issue in the diagnosis of epilepsy and it can be considered as a classification problem. According to the particular property of EEG, a novel method based on sparse representation is proposed for epilepsy detection in this paper. Classification accuracy, robustness on noisy data and parameters (the size of dictionary and the nu...
متن کاملAnomaly Detection Based on System Call Classification
The aim of this paper is to create a new anomaly detection model based on rules. A detailed classification of the LINUX system calls according to their function and level of threat is presented. The detection model only aims at critical calls (i.e. the threat level 1 calls). In the learning process, the detection model dynamically processes every critical call, but does not use data mining or s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IPC
سال: 2011
ISSN: 1425-140X
DOI: 10.2478/v10248-012-0010-6