Anode materials for potassium‐ion batteries: Current status and prospects
نویسندگان
چکیده
منابع مشابه
Hollow Nanostructured Anode Materials for Li-Ion Batteries
Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li(+) transport, and more freedom f...
متن کاملPorous Si anode materials for lithium rechargeable batteries
Si anode materials for lithium rechargeable batteries have received much attention due to their high capacity. The Si itself can alloy with lithium up to Li4.4Si, corresponding to 4212 mAh/ g (4.4Li + Si 4 Li4.4Si). However, the large volume expansion of over 300% due to the formation of various LixSiy phases generates enormous mechanical stress within the ionic character material, which become...
متن کاملCurrent Status and Future Prospects for Tuberculosis
Tuberculosis is declared to be an infectious disease of global emergency by WHO. Approximately one-third of the world's population is infected with the tuberculosis. The lengthy and laborious current treatment of 6-9 months is associated with problems like patient noncompliance, multiple drug resistance and persistence of mycobacterium and significant toxicity of drugs. The increasing emergence...
متن کاملCurrent Status and Future Prospects
This article reviews recent advances in genomics and informatics relevant to cardiovascular research. In particular, we review the status of (1) whole genome sequencing efforts in human, mouse, rat, zebrafish, and dog; (2) the development of data mining and analysis tools; (3) the launching of the National Heart, Lung, and Blood Institute Programs for Genomics Applications and Proteomics Initia...
متن کاملAnode for Sodium-Ion Batteries
DOI: 10.1002/aenm.201500174 The continuous pulverization of alloy anodes during repeated sodiation/desodiation cycles is the major reason for the faster capacity decay. However, if these elements can form a compound (such as Sn 4 P 3 ) after each Na extraction, the pulverization of these elements can be partially repaired and the accumulation of pulverization can be terminated. Therefore, we ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Carbon Energy
سال: 2020
ISSN: 2637-9368,2637-9368
DOI: 10.1002/cey2.57