Analytic Methods for Solving Higher Order Ordinary Differential Equations
نویسندگان
چکیده
منابع مشابه
Higher order numerical methods for solving fractional differential equations
In this paper we introduce higher order numerical methods for solving fractional differential equations. We use two approaches to this problem. The first approach is based on a direct discretisation of the fractional differential operator: we obtain a numerical method for solving a linear fractional differential equation with order 0 < α < 1. The order of convergence of the numerical method is ...
متن کاملHIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS II: Nonhomogeneous Equations
Because the presentation of this material in class will differ from that in the book, I felt that notes that closely follow the class presentation might be appreciated.
متن کاملBoundary value problems for higher order ordinary differential equations
Let f : [a, b] × R n+1 → R be a Carathéodory's function. Let {t h }, with t h ∈ [a, b], and {x h } be two real sequences. In this paper, the family of boundary value problems´x is considered. It is proved that these boundary value problems admit at least a solution for each k ≥ ν, where ν ≥ n + 1 is a suitable integer. Some particular cases, obtained by specializing the sequence {t h }, are poi...
متن کاملRenormalization methods for higher order differential equations
We adapt methodology of statistical mechanics and quantum field theory to approximate solutions to an arbitrary order ordinary differential equation boundary value problem by a second-order equation. In particular, we study equations involving the derivative of a double-well potential such as u− u3 or − u + 2u3. Using momentum (Fourier) space variables we average over short length scales and de...
متن کاملSingular Higher Order Boundary Value Problems for Ordinary Differential Equations
This paper is somewhat of an extension of the recent work done by Kunkel [6]. Kunkel looked at an extension of Rachu̇nková and Rachu̇nek’s work where they studied a second order singular boundary value problem for the discrete p-Laplacian, φp(x) = |x|x [7]. Kunkel’s results extend theirs to the second order differential case, but only for p = 2, i.e. φ2(x) = x. In this paper, we extend Kunkel’s w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2019
ISSN: 2227-7390
DOI: 10.3390/math7090826