Analytic continuation of the Lucas zeta andL-functions
نویسندگان
چکیده
منابع مشابه
Analytic continuation of multiple Hurwitz zeta functions
We use a variant of a method of Goncharov, Kontsevich, and Zhao [Go2, Z] to meromorphically continue the multiple Hurwitz zeta function ζd(s; θ) = ∑ 0<n1<···<nd (n1 + θ1) −s1 · · · (nd + θd)d , θk ∈ [0, 1), to C, to locate the hyperplanes containing its possible poles, and to compute the residues at the poles. We explain how to use the residues to locate trivial zeros of ζd(s; θ).
متن کاملAnalytic Continuation of Multiple Zeta Functions
In this paper we shall define the analytic continuation of the multiple (Euler-Riemann-Zagier) zeta functions of depth d: ζ(s1, . . . , sd) := ∑ 0 1 and ∑d j=1 Re (sj) > d. We shall also study their behavior near the poles and pose some open problems concerning their zeros and functional equations at the end.
متن کاملAnalytic Properties of Shintani Zeta Functions
In this note, we describe various theoretical results, numerical computations, and speculations concerning the analytic properties of the Shintani zeta functions associated to the space of binary cubic forms. We describe how these zeta functions almost fit into the general analytic theory of zeta and L-functions, and we discuss the relationship between this analytic theory and counting problems...
متن کاملMeromorphic Continuation of Dynamical Zeta Functions via Transfer Operators
We describe a general method to prove meromorphic continuation of dynamical zeta functions to the entire complex plane under the condition that the corresponding partition functions are given via a dynamical trace formula from a family of transfer operators. Further we give general conditions for the partition functions associated with general spin chains to be of this type and provide various ...
متن کاملAnalytic Continuation of the Resolvent of the Laplacian and the Dynamical Zeta Function
Let s0 < 0 be the abscissa of absolute convergence of the dynamical zeta function Z(s) for several disjoint strictly convex compact obstacles Ki ⊂ R , i = 1, . . . , κ0, k0 ≥ 3, and let Rχ(z) = χ(−∆D − z2)−1χ, χ ∈ C∞ 0 (R ), be the cut-off resolvent of the Dirichlet Laplacian −∆D in Ω = RN \ ∪0 i=1Ki. We prove that there exists σ1 < s0 such that Z(s) is analytic for Re(s) ≥ σ1 and the cut-off r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 2013
ISSN: 0019-3577
DOI: 10.1016/j.indag.2013.04.002