Analysis of the Frank–Wolfe method for convex composite optimization involving a logarithmically-homogeneous barrier
نویسندگان
چکیده
Abstract We present and analyze a new generalized Frank–Wolfe method for the composite optimization problem $$(P): {\min }_{x\in {\mathbb {R}}^n} \; f(\mathsf {A} x) + h(x)$$ ( P ) : min x ∈ R n f A + h , where f is $$\theta $$ θ -logarithmically-homogeneous self-concordant barrier, $$\mathsf {A}$$ linear operator function h has bounded domain but possibly non-smooth. show that our requires $$O((\delta _0 \theta R_h)\ln (\delta _0) (\theta R_h)^2/\varepsilon )$$ O δ 0 ln 2 / ε iterations to produce an $$\varepsilon -approximate solution, $$\delta _0$$ denotes initial optimality gap $$R_h$$ variation of on its domain. This result establishes certain intrinsic connections between -logarithmically homogeneous barriers method. When specialized D -optimal design problem, we essentially recover complexity obtained by Khachiyan (Math Oper Res 21 (2): 307–320, 1996) using with exact line-search. also study (Fenchel) dual ( P ), equivalent adaptive-step-size mirror descent applied problem. enables us provide iteration bounds despite fact objective non-Lipschitz unbounded In addition, computational experiments point potential usefulness Poisson image de-blurring problems TV regularization, simulated PET instances.
منابع مشابه
buckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
A Primal-Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms
We propose a new first-order splitting algorithm for solving jointly the primal and dual formulations of large-scale convex minimization problems involving the sum of a smooth function with Lipschitzian gradient, a nonsmooth proximable function, and linear composite functions. This is a full splitting approach, in the sense that the gradient and the linear operators involved are applied explici...
متن کاملConvergence Analysis of the Gauss-newton Method for Convex Inclusion Problems and Convex Composite Optimization
Using the convex process theory we study the convergence issues of the iterative sequences generated by the Gauss-Newton method for the convex inclusion problem defined by a cone C and a Fréchet differentiable function F (the derivative is denoted by F ′). The restriction in our consideration is minimal and, even in the classical case (the initial point x0 is assumed to satisfy the following tw...
متن کاملa time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
A Gauss - Newton method for convex composite optimization 1
An extension of the Gauss-Newton method for nonlinear equations to convex composite optimization is described and analyzed. Local quadratic convergence is established for the minimization of h o F under two conditions, namely h has a set of weak sharp minima, C, and there is a regular point of the inclusion F(x) E C. This result extends a similar convergence result due to Womersley (this journa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2022
ISSN: ['0025-5610', '1436-4646']
DOI: https://doi.org/10.1007/s10107-022-01820-9