Analysis of supervised classification techniques
نویسندگان
چکیده
منابع مشابه
the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Supervised Machine Learning: A Review of Classification Techniques
Supervised machine learning is the search for algorithms that reason from externally supplied instances to produce general hypotheses, which then make predictions about future instances. In other words, the goal of supervised learning is to build a concise model of the distribution of class labels in terms of predictor features. The resulting classifier is then used to assign class labels to th...
متن کاملComputational prediction of protein interaction networks through supervised classification techniques
This paper implements integrative methods to predict Pairwise (PW) and Module-Based (MB) protein interactions in Saccharomyces cerevisiae. The predictive ability of combining diverse sets of relatively strong and weak predictive datasets is investigated. Different classification techniques: Naive Bayesian (NB), Multilayer Perceptron (MLP) and K-Nearest Neighbors (KNN) were evaluated. The assess...
متن کاملClassification Techniques Analysis
Data mining is the discovery of knowledge and useful information from the large amounts of data stored in databases. It is referred to as knowledge discovery from databases (KDD), is the automated or convenient extraction of patterns representing knowledge implicitly stored in large databases. Data mining tools predict future trends and behaviours, allowing businesses to make proactive, knowled...
متن کاملClassification and analysis in supervised mixture-modelling
This paper describes an algorithm that is an extension of mixture-modelling to supervised clustering. It is demonstrated to be as accurate as current state-of-the-art machine learning algorithms across various data sets, and significantly more accurate than distance-based supervised clustering algorithms. Most significantly, it combines the classification itself with the calculation of rich inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Engineering & Technology
سال: 2017
ISSN: 2227-524X
DOI: 10.14419/ijet.v7i1.1.9486