An upper bound for the ramsey number M(5, 4)

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Upper Bound for the Ramsey Numbers

The Ramsey number r(H,G) is defined as the minimum N such that for any coloring of the edges of the N -vertex complete graph KN in red and blue, it must contain either a red H or a blue G. In this paper we show that for any graph G without isolated vertices, r(K3, G) ≤ 2q + 1 where G has q edges. In other words, any graph on 2q + 1 vertices with independence number at most 2 contains every (iso...

متن کامل

An Upper Bound for the Turán Number t3(n,4)

Let tr(n, r+ 1) denote the smallest integer m such that every r-uniform hypergraph on n vertices with m+ 1 edges must contain a complete graph on r+ 1 vertices. In this paper, we prove that lim n→∞ t3(n, 4) ( n 3 ) ≤ 3 +17 12 = .593592 . . ..

متن کامل

The upper domination Ramsey number u(4, 4)

The upper domination Ramsey number u(m,n) is the smallest integer p such that every 2-coloring of the edges of Kp with color red and blue, Γ(B) ≥ m or Γ(R) ≥ n, where B and R is the subgraph of Kp induced by blue and red edges, respectively; Γ(G) is the maximum cardinality of a minimal dominating set of a graph G. In this paper, we show that u(4, 4) ≤ 15.

متن کامل

An upper bound for the Ramsey numbers r(&, G)*

The Ramsey number r(H, G) is defined as the minimum N such that for any coloring of the edges of the N-vertex complete graph KN in red and blue, it must contain either a ted H or a blue G. In this paper we show that for any graph G without isolated vertices, r(K,, G)< 2qf 1 where G has q edges. In other words, any graph on 2q+ 1 vertices with independence number at most 2 contains every (isolat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 1971

ISSN: 0097-3165

DOI: 10.1016/0097-3165(71)90002-1