An unconditionally stable finite element scheme for anisotropic curve shortening flow

نویسندگان

چکیده

Based on a recent novel formulation of parametric anisotropic curve shortening flow, we analyse fully discrete numerical method this geometric evolution equation. The uses piecewise linear finite elements in space and backward Euler approximation time. We establish existence uniqueness solution, as well an unconditional stability property. Some computations confirm the theoretical results demonstrate practicality our method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Unconditionally Stable Finite Element-finite Volume Pressure Correction Scheme for the Drift-flux Model

We present in this paper a pressure correction scheme for the drift-flux model combining finite element and finite volume discretizations, which is shown to enjoy essential stability features of the continuous problem: the scheme is conservative, the unknowns are kept within their physical bounds and, in the homogeneous case (i.e. when the drift velocity vanishes), the discrete entropy of the s...

متن کامل

An Unconditionally Stable Parallel Difference Scheme for Telegraph Equation

We use an unconditionally stable parallel difference scheme to solve telegraph equation. This method is based on domain decomposition concept and using asymmetric Saul’yev schemes for internal nodes of each sub-domain and alternating group implicit method for sub-domain’s interfacial nodes. This new method has several advantages such as: good parallelism, unconditional stability and better accu...

متن کامل

An Unconditionally Stable Scheme for the Finite-Difference Time-Domain Method

In this work, we propose a numerical method to obtain an unconditionally stable solution for the finite-difference time-domain (FDTD) method for the TE case. This new method does not utilize the customary explicit leapfrog time scheme of the conventional FDTD method. Instead we solve the time-domain Maxwell’s equations by expressing the transient behaviors in terms of weighted Laguerre polynomi...

متن کامل

An unconditionally stable rotational velocity-correction scheme for incompressible flows

We present an unconditionally stable splitting scheme for incompressible Navier-Stokes equations based on the rotational velocity-correction formulation. The main advantages of the scheme are: (i) it allows the use of time step sizes considerably larger than the widely-used semi-implicit type schemes: the time step size is only constrained by accuracy; (ii) it does not require the velocity and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archivum mathematicum

سال: 2023

ISSN: ['0044-8753', '1212-5059']

DOI: https://doi.org/10.5817/am2023-3-263