An RNA polymerase preparation from Methylobacterium extorquens AM1 capable of transcribing from a methylotrophic promoter
نویسندگان
چکیده
منابع مشابه
Genetic organization of methylamine utilization genes from Methylobacterium extorquens AM1.
An isolated 5.2-kb fragment of Methylobacterium extorquens AM1 DNA was found to contain a gene cluster involved in methylamine utilization. Analysis of polypeptides synthesized in an Escherichia coli T7 expression system showed that five genes were present. Two of the genes encoded the large and small subunits of methylamine dehydrogenase, and a third encoded amicyanin, the presumed electron ac...
متن کاملFormate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1.
In serine cycle methylotrophs, methylene tetrahydrofolate (H4F) is the entry point of reduced one-carbon compounds into the serine cycle for carbon assimilation during methylotrophic metabolism. In these bacteria, two routes are possible for generating methylene H4F from formaldehyde during methylotrophic growth: one involving the reaction of formaldehyde with H4F to generate methylene H4F and ...
متن کاملdehydrogenase from Methylobacterium extorquens
The structure of methanol dehydrogenase (MDH) at 0.194 nm (1.94 A) has been used to provide a model structure for part of a membrane quinoprotein glucose dehydrogenase (GDH). The basic superbarrel structure is retained, along with the tryptophandocking motifs. The active-site regions are similar, but there are important differences, the most important being that GDH lacks the novel disulphide r...
متن کاملThe small-subunit polypeptide of methylamine dehydrogenase from Methylobacterium extorquens AM1 has an unusual leader sequence.
The nucleotide sequence for the N-terminal region of the small subunit of methylamine dehydrogenase from Methylobacterium extorquens AM1 has revealed a leader sequence that is unusual in both its length and composition. Gene fusions to lacZ and phoA show that this leader sequence does not function in Escherichia coli but does function in M. extorquens AM1.
متن کاملMetabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production
BACKGROUND Butanol is a promising next generation fuel and a bulk chemical precursor. Although clostridia are the primary industrial microbes for the fermentative production of 1-butanol, alternative engineered hosts have the potential to generate 1-butanol from alternative carbon feedstocks via synthetic metabolic pathways. Methylobacterium extorquens AM1, a facultative methylotrophic α-proteo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microbiology
سال: 1998
ISSN: 1350-0872,1465-2080
DOI: 10.1099/00221287-144-1-177