An Orthomodular Lattice Admitting No Group-Valued Measure

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NONINVERTIBLE TRANSFORMATIONS ADMITTING NO ABSOLUTELY CONTINUOUS ct-FINITE INVARIANT MEASURE

We study a family of H-to-1 conservative ergodic endomorphisms which we will show to admit no rj-finite absolutely continuous invariant measure. We exhibit recurrent measures for these transformations and study their ratio sets; the examples can be realized as C°° endomorphisms of the 2-torus.

متن کامل

LATTICE-VALUED CATEGORIES OF LATTICE-VALUED CONVERGENCE SPACES

We study L-categories of lattice-valued convergence spaces. Suchcategories are obtained by fuzzifying" the axioms of a lattice-valued convergencespace. We give a natural example, study initial constructions andfunction spaces. Further we look into some L-subcategories. Finally we usethis approach to quantify how close certain lattice-valued convergence spacesare to being lattice-valued topologi...

متن کامل

Countable Infinitary Theories Admitting an Invariant Measure

Let L be a countable language. We characterize, in terms of definable closure, those countable theories Σ of Lω1,ω(L) for which there exists an S∞-invariant probability measure on the collection of models of Σ with underlying set N. Restricting to Lω,ω(L), this answers an open question of Gaifman from 1964, via a translation between S∞-invariant measures and Gaifman’s symmetric measure-models w...

متن کامل

Orthomodular-Valued Models for quantum Set Theory

Orthomodular logic represented by a complete orthomodular lattice has been studied as a pertinent generalization of the two-valued logic, Boolean-valued logic, and quantum logic. In this paper, we introduce orthomodular logic valued models for set theory generalizing quantum logic valued models introduced by Takeuti as well as Boolean-valued models introduced by Scott and Solovay, and prove a g...

متن کامل

Every Finite Group Is the Automorphism Group of Some Finite Orthomodular Lattice

If L is a lattice, the automorphism group of L is denoted Aut(L). It is known that given a finite abstract group H, there exists a finite distributive lattice D such that Aut(D) £= H. It is also known that one cannot expect to find a finite orthocomplemented distributive (Boolean) lattice B such that Aut(B) s= H. In this paper it is shown that there does exist a finite orthomodular lattice L su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1994

ISSN: 0002-9939

DOI: 10.2307/2160833