An optimal data ordering scheme for Dirichlet process mixture models
نویسندگان
چکیده
منابع مشابه
Distributed Inference for Dirichlet Process Mixture Models
Bayesian nonparametric mixture models based on the Dirichlet process (DP) have been widely used for solving problems like clustering, density estimation and topic modelling. These models make weak assumptions about the underlying process that generated the observed data. Thus, when more data are collected, the complexity of these models can change accordingly. These theoretical properties often...
متن کاملFast search for Dirichlet process mixture models
Dirichlet process (DP) mixture models provide a flexible Bayesian framework for density estimation. Unfortunately, their flexibility comes at a cost: inference in DP mixture models is computationally expensive, even when conjugate distributions are used. In the common case when one seeks only a maximum a posteriori assignment of data points to clusters, we show that search algorithms provide a ...
متن کاملDirichlet Process Mixture Models for Verb Clustering
In this work we apply Dirichlet Process Mixture Models to a learning task in natural language processing (NLP): lexical-semantic verb clustering. We assess the performance on a dataset based on Levin’s (1993) verb classes using the recently introduced Vmeasure metric. In, we present a method to add human supervision to the model in order to to influence the solution with respect to some prior k...
متن کاملScalable Estimation of Dirichlet Process Mixture Models on Distributed Data
We consider the estimation of Dirichlet Process Mixture Models (DPMMs) in distributed environments, where data are distributed across multiple computing nodes. A key advantage of Bayesian nonparametric models such as DPMMs is that they allow new components to be introduced on the fly as needed. This, however, posts an important challenge to distributed estimation – how to handle new components ...
متن کاملHybrid Dirichlet mixture models for functional data
In functional data analysis, curves or surfaces are observed, up to measurement error, at a finite set of locations, for, say, a sample of n individuals. Often, the curves are homogeneous, except perhaps for individual-specific regions that provide heterogeneous behaviour (e.g. ‘damaged’ areas of irregular shape on an otherwise smooth surface). Motivated by applications with functional data of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2017
ISSN: 0167-9473
DOI: 10.1016/j.csda.2017.02.010