An Opial-type integral inequality and exponentially convex functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Opial-type inequality with an integral boundary condition

We determine the best constant K and extremals of the Opial-type inequality ∫ b a |yy ′| dx ≤ K(b − a) ∫ b a |y ′|2 dx where y is required to satisfy the boundary condition ∫ b a y dx = 0. The techniques employed differ from either those used recently by Denzler to solve this problem or originally to prove the classical inequality; but they also yield a new proof of that inequality.

متن کامل

An Opial–type Inequality for Fractional Derivatives of Two Functions

This paper presents improvements of some Opial-type inequalities involving the RiemannLiouville, Caputo and Canavati fractional derivatives, and presents some new Opial-type inequalities. Mathematics subject classification (2010): 26A33, 26D15.

متن کامل

An inequality related to $eta$-convex functions (II)

Using the notion of eta-convex functions as generalization of convex functions, we estimate the difference between the middle and right terms in Hermite-Hadamard-Fejer inequality for differentiable mappings. Also as an application we give an error estimate for midpoint formula.

متن کامل

On Opial–type Integral Inequalities and Applications

In the present paper we establish some new Opial-type inequalities involving higher order partial derivatives. Our results in special cases yield some of the recent results on Opial’s inequality. As application, we prove the uniqueness of the solution of initial value problem involving higher order partial differential equation. Mathematics subject classification (2010): 26D15.

متن کامل

Legendre-type integrands and convex integral functions

In this paper, we study the properties of integral functionals induced on LE(S, μ) by closed convex functions on a Euclidean space E. We give sufficient conditions for such integral functions to be strongly rotund (well-posed). We show that in this generality functions such as the Boltzmann-Shannon entropy and the Fermi-Dirac entropy are strongly rotund. We also study convergence in measure and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractional Differential Calculus

سال: 2015

ISSN: 1847-9677

DOI: 10.7153/fdc-05-03