An operator equation, KdV equation and invariant subspaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operator splitting for the KdV equation

We provide a new analytical approach to operator splitting for equations of the type ut = Au + B(u) where A is a linear operator and B is quadratic. A particular example is the Korteweg–de Vries (KdV) equation ut−uux +uxxx = 0. We show that the Godunov and Strang splitting methods converge with the expected rates if the initial data are sufficiently regular.

متن کامل

A solution of an operator equation related to the KdV equation

For a given nonzero bounded linear operator A on a Banach space X, we show that if A or A∗ has an eigenvalue then, except when the dimension of X is equal to two and the trace of A is zero, there exists a bounded linear operator B on X such that (i) AB + BA is of rank one, and (ii) I + f (A)B is invertible for every function f analytic in a neighborhood of the spectrum of A. This result was mot...

متن کامل

Quantum lattice KdV equation

A quantum theory is developed for a difference-difference system which can serve as a toy-model of the quantum Korteveg-de-Vries equation. Introduction This Letter presents an example of a completely integrable ‘discrete-space-time quantum model’ whose Heisenberg equations of motion have the form φ (τ, n) φ (τ, n− 1) + λ φ (τ, n− 1) φ (τ − 1, n− 1) = λ φ (τ, n) φ (τ − 1, n) + φ (τ − 1, n) φ (τ ...

متن کامل

The Linear KdV Equation with an Interface

The interface problem for the linear Korteweg-de Vries (KdV) equation in one-dimensional piecewise homogeneous domains is examined by constructing an explicit solution in each domain. The location of the interface is known and a number of compatibility conditions at the boundary are imposed. We provide an explicit characterization of sufficient interface conditions for the construction of a sol...

متن کامل

Multi-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation

A direct rational exponential scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equation. We have considered the Calogero–Bogoyavlenskii–Schiff equation and KdV equation as two concrete examples to show efficiency of the method. As a result, one wave, two wave and three wave soliton solutions are obtained. Corresponding potential energy of the solito...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2009

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-09-10118-1