An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies
نویسندگان
چکیده
منابع مشابه
An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies
We prove an isoperimetric inequality for uniformly log-concave measures and for the uniform measure on a uniformly convex body. These inequalities imply the log-Sobolev inequalities proved by Bobkov and Ledoux [12] and Bobkov and Zegarlinski [13]. We also recover a concentration inequality for uniformly convex bodies, similar to that proved by Gromov and Milman [22].
متن کاملOn Gaussian Marginals of Uniformly Convex Bodies
We show that many uniformly convex bodies have Gaussian marginals in most directions in a strong sense, which takes into account the tails of the distributions. These include uniformly convex bodies with power type 2, and power type p > 2 with some additional type condition. In particular, all unit-balls of subspaces of Lp for 1 < p < ∞ have Gaussian marginals in this strong sense. Using the we...
متن کاملOn Isoperimetric Inequalities for Log-convex Measures
Let μ = ρdx be a Borel measure on Rd. A Borel set A ⊂ R is a solution of the isoperimetric problem if for any B ⊂ R satisfying μ(A) = μ(B) one has μ(∂A) ≤ μ(∂B), where μ(∂A) = ∫ ∂A ρ dHd−1 is the corresponding surface measure. There exists only a small number of examples where the isoperimetric problem has an exact solution. The most important case is given by Lebesgue measure λ on R, the solut...
متن کاملSome Uniformly Convex Spaces
size of the éliminants but the size of their largest prime factor which is important, and secondly it is not essential to take the w's in order of magnitude. In answer, it should be pointed out that after one passes the limits of factor tables, it becomes impracticable to deal with the factors of the éliminant rather than the éliminant. Therefore, since the éliminant (in one case at least) appe...
متن کاملClasses of uniformly starlike and convex functions
Some classes of uniformly starlike and convex functions are introduced. The geometrical properties of these classes and their behavior under certain integral operators are investigated. 1. Introduction. Let A denote the class of functions of the form f (z) = z+ ∞ n=2 a n z
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2008
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2007.12.002