An involution on theK–theory of bimonoidal categories with anti-involution
نویسندگان
چکیده
منابع مشابه
An Involution on the K-theory of Bimonoidal Categories with Anti-involution
We construct an involution on the K-theory of any bimonoidal category with antiinvolution. Particular examples of such are braided bimonoidal categories. We consider group actions on bimonoidal categories and their induced action on the associated K-theory.
متن کاملOn centralizers of prime rings with involution
Let $R$ be a ring with involution $*$. An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$. The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کاملDivision Algebras with an Anti-automorphism but with No Involution
In this note we give examples of division rings which posses an anti-automorphism but no involution. The motivation for such examples comes from geometry. If D is a division ring and V a finite-dimensional right D-vector space of dimension ≥ 3, then the projective geometry P(V ) has a duality (resp. polarity) if and only if D has an anti-automorphism (resp. involution) [2, p. 97, p. 111]. Thus,...
متن کاملCoherence of the Double Involution on ∗-autonomous Categories
We show that any free ∗-autonomous category is strictly equivalent to a free ∗-autonomous category in which the double-involution (−)∗∗ is the identity functor and the canonical isomorphism A A∗∗ is an identity arrow for all A.
متن کاملInvolution Matrices of Real Quaternions
An involution or anti-involution is a self-inverse linear mapping. In this paper, we will present two real quaternion matrices, one corresponding to a real quaternion involution and one corresponding to a real quaternion anti-involution. Moreover, properties and geometrical meanings of these matrices will be given as reflections in R^3.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebraic & Geometric Topology
سال: 2010
ISSN: 1472-2739,1472-2747
DOI: 10.2140/agt.2010.10.315