An Inverse Optimal Stopping Problem for Diffusion Processes
نویسندگان
چکیده
منابع مشابه
On an Optimal Stopping Problem of Time Inhomogeneous Diffusion Processes
For given quasi-continuous functions g, h with g ≤ h and diffusion process M determined by stochastic differential equations or symmetric Dirichlet forms, characterizations of the value functions eg(s, x) = sup σ J (s,x) (σ) and ¯ w(s, x) = infτ sup σ J (s,x) (σ, τ) are well studied so far. In this paper, by using the time dependent Dirichlet forms, we generalize these results to time inhomogen...
متن کاملOptimal results for a time-fractional inverse diffusion problem under the Hölder type source condition
In the present paper we consider a time-fractional inverse diffusion problem, where data is given at $x=1$ and the solution is required in the interval $0
متن کاملDiscounted optimal stopping for maxima of some jump-diffusion processes∗
We present closed form solutions to some discounted optimal stopping problems for the maximum process in a model driven by a Brownian motion and a compound Poisson process with exponential jumps. The method of proof is based on reducing the initial problems to integro-differential freeboundary problems where the normal reflection and smooth fit may break down and the latter then be replaced by ...
متن کاملThe Inverse First-passage Problem and Optimal Stopping
Given a survival distribution on the positive half-axis and a Brownian motion, a solution of the inverse first-passage problem consists of a boundary so that the first passage time over the boundary has the given distribution. We show that the solution of the inverse firstpassage problem coincides with the solution of a related optimal stopping problem. Consequently, methods from optimal stoppi...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Operations Research
سال: 2019
ISSN: 0364-765X,1526-5471
DOI: 10.1287/moor.2018.0930