An index theorem for Wiener-Hopf operators on the discrete quarter-plane
نویسندگان
چکیده
منابع مشابه
Convex Polytopes and the Index of Wiener–hopf Operators
We study the C∗-algebra of Wiener–Hopf operators AΩ on a cone Ω with polyhedral base P. As is known, a sequence of symbol maps may be defined, and their kernels give a filtration by ideals of AΩ, with liminary subquotients. One may define K-group valued “index maps” between the subquotients. These form the E1 term of the Atiyah–Hirzebruch type spectral sequence induced by the filtration. We sho...
متن کاملON TRUNCATED WIENER-HOPF OPERATORS AND BMOpZq
whenever Φ is such that this extends to a bounded operator on Lpr0, asq. Whenever a is of no importance we will omit it from the notation. We abbreviate by saying that WΦ is a TWH-operator. These operators (or rather, unitarily equivalent ones) also go under the name finite interval convolution operators, truncated Hankel operators or Toeplitz operators on the Paley-Wiener space. See e.g. [1, 2...
متن کاملOn the Hopf Index Theorem and the Hopf Invariant
Let ƒ: N —• M be a C°° map of oriented compact manifolds, and let L be an oriented closed submanifold of codimension q > 1 in M. If w is a closed form Poincaré dual to L, we show that f~L, with multiplicities counted, is Poincaré dual to ƒ *w in N and is even meaningful on a "secondary" level. This leads to generalized versions of the Hopf invariant, the Hopf index theorem and the Bezout theore...
متن کاملWiener - Hopf Operators and Absolutely Continuous Spectra
CONTINUOUS SPECTRA. II BY C. R. PUTNAM Communicated by Maurice Heins, November 1, 1967 1. This paper is a continuation of [4]. It may be recalled that if A is a self-adjoint operator on a Hubert space § with spectral resolution A=zf\dE\, then the set of elements x in § for which ||-Ex#|| is an absolutely continuous function of X is a subspace, &a(A), of § (see, e.g., Halmos [l, p. 104]). The op...
متن کاملDouble-null operators and the investigation of Birkhoff's theorem on discrete lp spaces
Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 1972
ISSN: 0022-040X
DOI: 10.4310/jdg/1214430645