An Improved Nordhaus–Gaddum-Type Theorem for 2-Rainbow Independent Domination Number

نویسندگان

چکیده

For a graph G, its k-rainbow independent domination number, written as γrik(G), is defined the cardinality of minimum set consisting k vertex-disjoint sets V1,V2,…,Vk such that every vertex in V0=V(G)\(∪i=1kVi) has neighbor Vi for all i∈{1,2,…,k}. This invariant was proposed by Kraner Šumenjak, Rall and Tepeh (in Applied Mathematics Computation 333(15), 2018: 353–361), which aims to compute number G□Kk (the generalized prism) via studying problem integer labeling on G. They proved Nordhaus–Gaddum-type theorem: 5≤γri2(G)+γri2(G¯)≤n+3 any n-order G with n≥3, G¯ denotes complement work improves their result shows if G≇C5, then 5≤γri2(G)+γri2(G¯)≤n+2.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the outer independent 2-rainbow domination number of Cartesian products of paths and cycles

‎Let G be a graph‎. ‎A 2-rainbow dominating function (or‎ 2-RDF) of G is a function f from V(G)‎ ‎to the set of all subsets of the set {1,2}‎ ‎such that for a vertex v ∈ V (G) with f(v) = ∅, ‎the‎‎condition $bigcup_{uin N_{G}(v)}f(u)={1,2}$ is fulfilled‎, wher NG(v)  is the open neighborhood‎‎of v‎. ‎The weight of 2-RDF f of G is the value‎‎$omega (f):=sum _{vin V(G)}|f(v)|$‎. ‎The 2-rainbow‎‎d...

متن کامل

Edge 2-rainbow domination number and annihilation number in trees

A edge 2-rainbow dominating function (E2RDF) of a graph G is a ‎function f from the edge set E(G) to the set of all subsets‎ ‎of the set {1,2} such that for any edge.......................

متن کامل

unicyclic graphs with strong equality between the 2-rainbow domination and independent 2-rainbow domination numbers

a 2-emph{rainbow dominating function} (2rdf) on a graph $g=(v, e)$ is afunction $f$ from the vertex set $v$ to the set of all subsets of the set${1,2}$ such that for any vertex $vin v$ with $f(v)=emptyset$ thecondition $bigcup_{uin n(v)}f(u)={1,2}$ is fulfilled. a 2rdf $f$ isindependent (i2rdf) if no two vertices assigned nonempty sets are adjacent.the emph{weight} of a 2rdf $f$ is the value $o...

متن کامل

Outer independent Roman domination number of trees

‎A Roman dominating function (RDF) on a graph G=(V,E) is a function  f : V → {0, 1, 2}  such that every vertex u for which f(u)=0 is‎ ‎adjacent to at least one vertex v for which f(v)=2‎. ‎An RDF f is called‎‎an outer independent Roman dominating function (OIRDF) if the set of‎‎vertices assigned a 0 under f is an independent set‎. ‎The weight of an‎‎OIRDF is the sum of its function values over ...

متن کامل

Bounds on the 2-Rainbow Domination Number of Graphs

A 2-rainbow domination function of a graph G is a function f that assigns to each vertex a set of colors chosen from the set {1, 2}, such that for any v ∈ V (G), f(v) = ∅ implies

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9040402