An imbedding method for matrix eigenvalue problems
نویسندگان
چکیده
منابع مشابه
An Arnoldi Method for Nonlinear Eigenvalue Problems
For the nonlinear eigenvalue problem T (λ)x = 0 we propose an iterative projection method for computing a few eigenvalues close to a given parameter. The current search space is expanded by a generalization of the shift-and-invert Arnoldi method. The resulting projected eigenproblems of small dimension are solved by inverse iteration. The method is applied to a rational eigenvalue problem gover...
متن کاملSome Unusual Matrix Eigenvalue Problems
We survey some unusual eigenvalue problems arising in different applications. We show that all these problems can be cast as problems of estimating quadratic forms. Numerical algorithms based on the well-known Gauss-type quadrature rules and Lanczos process are reviewed for computing these quadratic forms. These algorithms reference the matrix in question only through a matrix-vector product op...
متن کاملAn integral method for solving nonlinear eigenvalue problems
We propose a numerical method for computing all eigenvalues (and the corresponding eigenvectors) of a nonlinear holomorphic eigenvalue problem that lie within a given contour in the complex plane. The method uses complex integrals of the resolvent operator, applied to at least k column vectors, where k is the number of eigenvalues inside the contour. The theorem of Keldysh is employed to show t...
متن کاملAn Ulm-like Cayley Transform Method for Inverse Eigenvalue Problems
We propose an Ulm-like Cayley transform method for solving inverse eigenvalue problems, which avoids solving approximate Jacobian equations comparing with other known methods. A convergence analysis of this method is provided and the R-quadratic convergence property is proved under the assumption of the distinction of the given eigenvalues. Numerical experiments are given in the last section an...
متن کاملAn inverse iteration method for eigenvalue problems with eigenvector nonlinearities
Abstract. Consider a symmetric matrix A(v) ∈ Rn×n depending on a vector v ∈ Rn and satisfying the property A(αv) = A(v) for any α ∈ R\{0}. We will here study the problem of finding (λ, v) ∈ R × Rn\{0} such that (λ, v) is an eigenpair of the matrix A(v) and we propose a generalization of inverse iteration for eigenvalue problems with this type of eigenvector nonlinearity. The convergence of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1978
ISSN: 0898-1221
DOI: 10.1016/0898-1221(78)90007-x