An explanation of local fractional variational iteration method and its application to local fractional modified Korteweg-de Vries equation
نویسندگان
چکیده
منابع مشابه
A Local Fractional Variational Iteration Method for Laplace Equation within Local Fractional Operators
and Applied Analysis 3 The nonlinear local fractional equation reads as L α u + N α u = 0, (19) where L α and N α are linear and nonlinear local fractional operators, respectively. Local fractional variational iteration algorithm can be written as [37] u n+1 (t) = u n (t) + t0 I t (α) {ξ α [L α u n (s) + N α u n (s)]} . (20) Here, we can construct a correction functional as follows [37]: u n+1 ...
متن کاملLocal Fractional Variational Iteration Method for
In this article, the local fractional variational iteration method is proposed to solve nonlinear partial differential equations within local fractional derivative operators. To illustrate the ability and reliability of the method, some examples are illustrated. A comparison between local fractional variational iteration method with the other numerical methods is given, revealing that the propo...
متن کاملFractional variational iteration method and its application
Article history: Received 26 March 2010 Accepted 9 April 2010 Available online 18 April 2010 Communicated by R. Wu
متن کاملA Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کاملModified Fractional Variational Iteration Method for Solving the Generalized Time-Space Fractional Schrödinger Equation
Based on He's variational iteration method idea, we modified the fractional variational iteration method and applied it to construct some approximate solutions of the generalized time-space fractional Schrödinger equation (GFNLS). The fractional derivatives are described in the sense of Caputo. With the help of symbolic computation, some approximate solutions and their iterative structure of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Thermal Science
سال: 2018
ISSN: 0354-9836,2334-7163
DOI: 10.2298/tsci160501143w