An Exact Method for Solving the Multi-Processor Flow-Shop
نویسندگان
چکیده
منابع مشابه
An Exact Method for Solving the Multi-Processor Flow-Shop
The aim of this paper is to present a new branch and bound method for solving the Multi-Processor Flow-Shop. This method is based on the relaxation of the initial problem to m-machine problems corresponding to centers. Release dates and tails are associated with opérations and machines. The branching scheme consists in ftxing the inputs of a critical center and the lower bounds are those of the...
متن کاملBranch-and-bound Methods for the Multi-processor Job Shop and Flow Shop Scheduling Problems
The Multi-Processor Job Shop and Flow Shop scheduling problems are variants on the standard Job Shop and Flow Shop problems in which each machine has the capacity to process more than one job simultaneously. This class of problems has attracted the attention of researchers in recent years and several lower bounds has been proposed for a Branch-and-Bound solution method. But only a few attempts ...
متن کاملAn Iterated Greedy Algorithm for Solving the Blocking Flow Shop Scheduling Problem with Total Flow Time Criteria
In this paper, we propose an iterated greedy algorithm for solving the blocking flow shop scheduling problem with total flow time minimization objective. The steps of this algorithm are designed very efficient. For generating an initial solution, we develop an efficient constructive heuristic by modifying the best known NEH algorithm. Effectiveness of the proposed iterated greedy algorithm is t...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولHOMOTOPY PERTURBATION METHOD FOR SOLVING FLOW IN THE EXTRUSION PROCESSES
In this paper, the homotopy perturbation method (HPM) is considered for finding approximate solutions of two-dimensional viscous flow. This technique provides a sequence of functions which converges to the exact solution of the problem. The HPM does not need a small parameters in the equations, but; the perturbation method depends on small parameter assumption and the obtained results. In most ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: RAIRO - Operations Research
سال: 2000
ISSN: 0399-0559,1290-3868
DOI: 10.1051/ro:2000103