An Eulerian finite-volume approach of fluid-structure interaction problems on quadtree meshes

نویسندگان

چکیده

A quadtree-based fully Eulerian finite volume approach for the simulation of fluid-structure interaction problems is presented. Both fluid and structure phases, which are assumed to be incompressible viscous, solved monolithically on whole computational domain. The discretization stencils limited first layer neighbors thus enhancing efficiency parallel computations while limiting numerical order discretizations that can reached. behavior hyperelastic structures described with non-linear Mooney-Rivlin model. several two dimensional test cases performed uniform quadtree grids results compared literature. To illustrate versatility model presented, a biomedical application, axisymmetric blood flow in cardiac pump,

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fully Eulerian formulation for fluid-structure-interaction problems

In this work, we present a Fully Eulerian framework for fluid-structure interaction (fsi) problems coupling the incompressible Navier-Stokes equations with a hyperelastic solid. The Fully Eulerian framework is a monolithic implicit variational formulation for the coupled problem. In contrast to the well-established Arbitrary Lagrangian Eulerian (ALE) coordinates, the Fully Eulerian framework fo...

متن کامل

An Eulerian-Lagrangian WENO finite volume scheme for advection problems

Abstract. We develop a locally conservative Eulerian-Lagrangian finite volume scheme with the weighted essentially non-oscillatory property (EL-WENO) in one-space dimension. This method has the advantages of both WENO and Eulerian-Lagrangian schemes. It is formally high-order accurate in space (we present the fifth order version) and essentially non-oscillatory. Moreover, it is free of a CFL ti...

متن کامل

An Eulerian-ALE Embedded Boundary Method for Turbulent Fluid-Structure Interaction Problems

The FInite Volume method with Exact two-phase Riemann problems (FIVER) is a robust Eulerian semi-discretization method for compressible multi-material (fluid-fluid, fluid-structure, or multi-fluid-structure) problems characterized by large density jumps and highly nonlinear structural motions and deformations. Its key components include an embedded boundary method for Computational Fluid Dynami...

متن کامل

Numerical Simulation of Fluid-Structure Interaction Problems on Hybrid Meshes with Algebraic Multigrid Methods

Fluid-structure interaction problems arise in many fields of application such as flows around elastic structures or blood flow in arteries. The method presented in this paper for solving such a problem is based on a reduction to an equation at the interface, involving the so-called Steklov-Poincaré operators. This interface equation is solved by a Newton iteration, for which directional derivat...

متن کامل

Fully Eulerian finite element approximation of a fluid-structure interaction problem in cardiac cells

We propose in this paper an Eulerian finite element approximation of a coupled chemical fluid-structure interaction problem arising in the study of mesoscopic cardiac biomechanics. We simulate the active response of a myocardial cell (here considered as an anisotropic, hyperelastic, and incompressible material), the propagation of calcium concentrations inside it, and the presence of a surround...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2022

ISSN: ['1090-2716', '0021-9991']

DOI: https://doi.org/10.1016/j.jcp.2022.111647