An efficient gradient projection method for structural topology optimization
نویسندگان
چکیده
منابع مشابه
A BINARY LEVEL SET METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION
This paper proposes an effective algorithm based on the level set method (LSM) to solve shape and topology optimization problems. Since the conventional LSM has several limitations, a binary level set method (BLSM) is used instead. In the BLSM, the level set function can only take 1 and -1 values at convergence. Thus, it is related to phase-field methods. We don’t need to solve the Hamilton-Jac...
متن کاملAn Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems
In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...
متن کاملCOMPOSITION OF ISOGEOMETRIC ANALYSIS WITH LEVEL SET METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION
In the present paper, an approach is proposed for structural topology optimization based on combination of Radial Basis Function (RBF) Level Set Method (LSM) with Isogeometric Analysis (IGA). The corresponding combined algorithm is detailed. First, in this approach, the discrete problem is formulated in Isogeometric Analysis framework. The objective function based on compliance of particular lo...
متن کاملPEIECWISE CONSTANT LEVEL SET METHOD BASED FINITE ELEMENT ANALYSIS FOR STRUCTURAL TOPOLOGY OPTIMIZATION USING PHASE FIELD METHOD
In this paper the piecewise level set method is combined with phase field method to solve the shape and topology optimization problem. First, the optimization problem is formed based on piecewise constant level set method then is updated using the energy term of phase field equations. The resulting diffusion equation which updates the level set function and optimization ...
متن کاملA Structural and Efficient Method for Calculating Gradient and Hessian with CVaR Portfolio Optimization Application
Calculating or approximating the derivatives for large-scale multi-dimensional functions is an active research area in modern mathematics. The rationale behind this popularity is its wide applications in statistics, financial mathematics and portfolio optimization. For example, in statistics, maximum likelihood estimation seeks the value of parameter vector that maximize the likelihood function...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Engineering Software
سال: 2020
ISSN: 0965-9978
DOI: 10.1016/j.advengsoft.2020.102863