An Automated Penetration Semantic Knowledge Mining Algorithm Based on Bayesian Inference
نویسندگان
چکیده
منابع مشابه
An Optimization Based Algorithm for Bayesian Inference
In the Bayesian statistical paradigm, uncertainty in the parameters of a physical system is characterized by a probability distribution. Information from observations is incorporated by updating this distribution from prior to posterior. Quantities of interest, such as credible regions, event probabilities, and other expectations can then be obtained from the posterior distribution. One major t...
متن کاملAn Optimal Approximation Algorithm for Bayesian Inference
Approximating the inference probability Pr X xjE e in any sense even for a single evidence node E is NP hard This result holds for belief networks that are allowed to contain extreme conditional probabilities that is conditional probabilities arbitrarily close to Nevertheless all previous approximation algorithms have failed to approximate e ciently many inferences even for belief networks with...
متن کاملADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملKnowledge-Based Data Mining Using Semantic Web
Semantic web offers a smarter web service which synchronizes and arranges all the data over web in a disciplined manner. In data mining over web, the accuracy of selecting necessary data according to user demand and pick them for output is considered as a major challenging task over the years. This paper proposes an approach to mapping data over the web 3.0 through ontology and access the requi...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers, Materials & Continua
سال: 2021
ISSN: 1546-2226
DOI: 10.32604/cmc.2021.012220