An Association Rule Mining-Based Framework for Understanding Lifestyle Risk Behaviors
نویسندگان
چکیده
منابع مشابه
An Association Rule Mining-Based Framework for Understanding Lifestyle Risk Behaviors
OBJECTIVES This study investigated the prevalence and patterns of lifestyle risk behaviors in Korean adults. METHODS We utilized data from the Fourth Korea National Health and Nutrition Examination Survey for 14,833 adults (>20 years of age). We used association rule mining to analyze patterns of lifestyle risk behaviors by characterizing non-adherence to public health recommendations related...
متن کاملData sanitization in association rule mining based on impact factor
Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...
متن کاملAn Inference Mechanism Framework for Association Rule Mining
Available approaches for Association Rule Mining (ARM) generates a large number of association rules, these rules may be trivial and redundant and also such rules are difficult to manage and understand for the users. If we consider their complexity, then it consumes lots of time and memory. Sometimes decision making is impossible for such kinds of association rules. An inference approach is req...
متن کاملA Novel Method for Selecting the Supplier Based on Association Rule Mining
One of important problems in supply chains management is supplier selection. In a company, there are massive data from various departments so that extracting knowledge from the company’s data is too complicated. Many researchers have solved this problem by some methods like fuzzy set theory, goal programming, multi objective programming, the liner programming, mixed integer programming, analyti...
متن کاملAgent Based Frameworks for Distributed Association Rule Mining: an Analysis
Distributed Association Rule Mining (DARM) is the task for generating the globally strong association rules from the global frequent itemsets in a distributed environment. The intelligent agent based model, to address scalable mining over large scale distributed data, is a popular approach to constructing Distributed Data Mining (DDM) systems and is characterized by a variety of agents coordina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2014
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0088859