An arithmetic remark on entire periodic functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Arithmetic of Entire Functions under Composition

In this paper, we prove, among other things, that any family of nonconstant entire functions of one complex variable has a greatest common right factor under composition. We prove a corresponding result for any family of pairwise dependent entire functions of N complex variables. Since f and af +b, where a, b # C and a{0 have all the same properties from the point of view of factoring under com...

متن کامل

Remark on periodic solutions of nonlinear oscillators

AppIied Mathematics Letters ~w.el~vier.ni/~ocate/~l Abstract-we contribute to the method of trigonometric series for solving differential equations of certain nonlinear oscillators.

متن کامل

Siegel Disks and Periodic Rays of Entire Functions

Let f be an entire function whose set of singular values is bounded and suppose that f has a Siegel disk U such that f |∂U is a homeomorphism. We extend a theorem of Herman by showing that, if the rotation number of U is diophantine, then ∂U contains a critical point of f . More generally, we show that, if U is a (not necessarily diophantine) Siegel disk as above, then U is bounded. Suppose fur...

متن کامل

Remark about Heat Diffusion on Periodic Spaces

Let M be a complete Riemannian manifold with a free cocompact Z-action. Let k(t, m1, m2) be the heat kernel on M . We compute the asymptotics of k(t, m1, m2) in the limit in which t → ∞ and d(m1, m2) ∼ √ t. We show that in this limit, the heat diffusion is governed by an effective Euclidean metric on R coming from the Hodge inner product on H(M/Z;R).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1971

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700047055