An Arclength Problem for Close-to-Convex Functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher order close-to-convex functions associated with Attiya-Srivastava operator

In this paper‎, ‎we introduce a new class$T_{k}^{s,a}[A,B,alpha‎ ,‎beta ]$ of analytic functions by using a‎ ‎newly defined convolution operator‎. ‎This class contains many known classes of‎ ‎analytic and univalent functions as special cases‎. ‎We derived some‎ ‎interesting results including inclusion relationships‎, ‎a radius problem and‎ ‎sharp coefficient bound for this class‎.

متن کامل

An inequality related to $eta$-convex functions (II)

Using the notion of eta-convex functions as generalization of convex functions, we estimate the difference between the middle and right terms in Hermite-Hadamard-Fejer inequality for differentiable mappings. Also as an application we give an error estimate for midpoint formula.

متن کامل

On the Fekete-Szeg6 problem for close-to-convex functions II

Let C (fl), fl > 0, denote the family of no rmal i zed c loseto-convex funct ions of o rder ft. F o r fl = 1 this is the usual set of c loseto-convex functions, which had been defined by Kap lan . In a prev ious pape r [3] we solved the Fekete-Szeg6 p r o b l e m of maximiz ing l a 3 2 a2l, 2 ~ [0, 1], for c loseto-convex functions. The largest n u m b e r 20 for which [a a 20 a2[ is max imized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 1966

ISSN: 0024-6107

DOI: 10.1112/jlms/s1-41.1.181-s