An analytic $LT$-equivariant index and noncommutative geometry
نویسندگان
چکیده
منابع مشابه
An equivariant index formula in contact geometry
Given an elliptic action of a compact Lie group G on a co-oriented contact manifold (M, E) one obtains two naturally associated objects: A G-transversally elliptic operator Db / , and an equivariant differential form with generalized coefficients J (E, X) defined in terms of a choice of contact form on M . We explain how the form J (E, X) is natural with respect to the contact structure, and gi...
متن کاملEquivariant noncommutative index on braided sphere
To some Hecke symmetries (i.e. Yang-Baxter braidings of Hecke type) we associate ”noncommutative varieties” called braided spheres. An example of such a variety is the Podles’ nonstandard quantum sphere. On any braided sphere we introduce and compute an ”equivariant” analogue of Connes’ noncommutative index. In contrast with the Connes’ construction our version of equivariant NC index is based ...
متن کاملDiffeomorphisms, Analytic Torsion and Noncommutative Geometry
We prove an index theorem concerning the pushforward of flat B-vector bundles, where B is an appropriate algebra. We construct an associated analytic torsion form T . If Z is a smooth closed aspherical manifold, we show that T gives invariants of π∗(Diff(Z)).
متن کاملIndex Theorem in Finite Noncommutative Geometry
Noncommutative (NC) geometry is interesting since it is related to string theories and matrix models,1)–3) and it may capture some nature of quantum gravity. It is also a candidate for a new regularization of quantum field theory.4) Study about topological aspects of gauge theory on it is important since compactification of extra dimensions with nontrivial index in string theory can realize chi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Noncommutative Geometry
سال: 2019
ISSN: 1661-6952
DOI: 10.4171/jncg/330