An alternate method of evaluating Lagrange multipliers of MEP

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Method of Lagrange Multipliers

and there are no inequality constraints (i.e. there are no fi(x) i = 1, . . . , m). We simply write the p equality constraints in the matrix form as Cx− d = 0. The basic idea in Lagrangian duality is to take the constraints in (1) into account by augmenting the objective function with a weighted sum of the constraint functions. We define the Lagrangian L : R ×R ×R → R associated with the proble...

متن کامل

Local Stability Conditions for the Babuska Method of Lagrange Multipliers

We consider the so-called Babuska method of finite elements with Lagrange multipliers for numerically solving the problem Au = f in il, u = g on 3Í2, iî C Rn, 7i > 2. We state a number of local conditions from which we prove the uniform stability of the Lagrange multiplier method in terms of a weighted, mesh-dependent norm. The stability conditions given weaken the conditions known so far and a...

متن کامل

Physical meaning of Lagrange multipliers

A rule to assign physical meaning to Lagrange multipliers is discussed. Examples from mechanics, statistical mechanics and quantum mechanics are given.

متن کامل

Lagrange Multipliers and Optimality

Lagrange multipliers used to be viewed as auxiliary variables introduced in a problem of constrained minimization in order to write first-order optimality conditions formally as a system of equations. Modern applications, with their emphasis on numerical methods and more complicated side conditions than equations, have demanded deeper understanding of the concept and how it fits into a larger t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SN Applied Sciences

سال: 2019

ISSN: 2523-3963,2523-3971

DOI: 10.1007/s42452-019-0211-3