An almost sure invariance principle for Hilbert space valued martingales
نویسندگان
چکیده
منابع مشابه
An almost sure invariance principle for random walks in a space-time random environment
We consider a discrete time random walk in a space-time i.i.d. random environment. We use a martingale approach to show that the walk is diffusive in almost every fixed environment. We improve on existing results by proving an invariance principle and considering environments with an L2 averaged drift. We also state an a.s. invariance principle for random walks in general random environments wh...
متن کاملA Vector-valued Almost Sure Invariance Principle for Sinai Billiards with Random Scatterers
Understanding the statistical properties of the aperiodic planar Lorentz gas stands as a grand challenge in the theory of dynamical systems. Here we study a greatly simplified but related model, proposed by Arvind Ayyer and popularized by Joel Lebowitz, in which a scatterer configuration on the torus is randomly updated between collisions. Taking advantage of recent progress in the theory of ti...
متن کاملA Vector-Valued Almost Sure Invariance Principle for Hyperbolic Dynamical Systems
We prove an almost sure invariance principle (approximation by d-dimensional Brownian motion) for vector-valued Hölder observables of large classes of nonuniformly hyperbolic dynamical systems. These systems include Axiom A diffeomorphisms and flows as well as systems modelled by Young towers with moderate tail decay rates. In particular, the position variable of the planar periodic Lorentz gas...
متن کاملAlmost Sure Invariance Principle for Random Piecewise Expanding Maps
The objective of this note is to prove the almost sure invariance principle (ASIP) for a large class of random dynamical systems. The random dynamics is driven by an invertiblemeasure preserving transformation σ of (Ω,F ,P) called the base transformation. Trajectories in the phase space X are formed by concatenations f ω := fσn−1ω ◦ · · · ◦ fσω ◦ fω of maps from a family of maps fω : X → X, ω ∈...
متن کاملAlmost Sure Invariance Principle for Nonuniformly Hyperbolic Systems
We prove an almost sure invariance principle that is valid for general classes of nonuniformly expanding and nonuniformly hyperbolic dynamical systems. Discrete time systems and flows are covered by this result. In particular, the result applies to the planar periodic Lorentz flow with finite horizon. Statistical limit laws such as the central limit theorem, the law of the iterated logarithm, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1982
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1982-0664040-3