An algorithmic pipeline for solving equations over discrete dynamical systems modelling hypothesis on real phenomena
نویسندگان
چکیده
This paper provides an algorithmic pipeline for studying the intrinsic structure of a finite discrete dynamical system (DDS) modelling evolving phenomenon. Here, by we mean, regarding dynamics DDS under observation, feature resulting from ‘cooperation’ two or more smaller DDS. The is described equation over which represents hypothesis phenomenon observation. allows solving such equation, i.e., validating phenomenon, as far asymptotic behaviour and number states observation are concerned. results about soundness completeness they obtained exploiting algebraic setting introduced in Dennunzio et al. (2018).
منابع مشابه
An efficient technique for solving systems of integral equations
In this paper, the wavelet method based on the Chebyshev polynomials of the second kind is introduced and used to solve systems of integral equations. Operational matrices of integration, product, and derivative are obtained for the second kind Chebyshev wavelets which will be used to convert the system of integral equations into a system of algebraic equations. Also, the error is analyzed and ...
متن کاملDynamical Systems Method for Solving Operator Equations
Consider an operator equation F(u)=0 in a Hilbert space H and assume that this equation is solvable. Let us call the problem of solving this equation ill-posed if the operator F ′(u) is not boundedly invertible, and well-posed otherwise. A general method, Dynamical Systems Method (DSM), for solving linear and nonlinear illposed problems in H is presented. This method consists of the constructio...
متن کاملMultistage Modified Sinc Method for Solving Nonlinear Dynamical Systems
The sinc method is known as an ecient numerical method for solving ordinary or par-tial dierential equations but the system of dierential equations has not been solved by this method which is the focus of this paper. We have shown that the proposed version of sinc is able to solve sti system while Runge-kutta method can not able to solve. Moreover, Due to the great attention to mathematical mod...
متن کاملFinite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$. An $ntimes n$ complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$). In this paper, we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Science
سال: 2023
ISSN: ['1877-7511', '1877-7503']
DOI: https://doi.org/10.1016/j.jocs.2022.101932