An Algebraic-Analytic Approach of Diophantine Equations*
نویسندگان
چکیده
منابع مشابه
Solving Systems of Linear Diophantine Equations: An Algebraic Approach
We describe through an algebraic and geometrical study, a new method for solving systems of linear diophantine equations. This approach yields an algorithm which is intrinsically parallel. In addition to the algorithm, we give a geometrical interpretation of the satissability of an homogeneous system, as well as upper bounds on height and length of all minimal solutions of such a system. We als...
متن کاملThe Modular Approach to Diophantine Equations
The aim of these notes is to communicate Ribet’s Level–Lowering Theorem and related ideas in an explicit and simplified (but hopefully still precise) way, and to explain how these ideas are used to derive information about solutions to Diophantine equations.
متن کاملDiophantine approximation and Diophantine equations
The first course is devoted to the basic setup of Diophantine approximation: we start with rational approximation to a single real number. Firstly, positive results tell us that a real number x has “good” rational approximation p/q, where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s result in 1842 (see [6] Course N◦2 §2.1) and the Markoff–Lagrange spectrum ([6] Course N◦1...
متن کاملAlgebraic and Analytic Aspects of Soliton Type Equations
This is a review of two of the fundamental tools for analysis of soliton equations: i) the algebraic ones based on Kac-Moody algebras, their central extensions and their dual algebras which underlie the Hamiltonian structures of the NLEE; ii) the construction of the fundamental analytic solutions (FAS) of the Lax operator and the Riemann-Hilbert problem (RHP) which they satisfy. The fact that t...
متن کاملSolvability of Diophantine Equations
Attila Bérczes (University of Debrecen): On arithmetic properties of solutions of norm form equations. Abstract. Let α be an algebraic number of degree n and K := Q(α). Consider the norm form equation NK/Q(x0 + x1α+ x2α + . . .+ xn−1α) = b in x0, . . . , xn−1 ∈ Z. (1) Let H denote the solution set of (1). Arranging the elements of H in an |H| × n array H, one may ask at least two natural questi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asian Journal of Algebra
سال: 2009
ISSN: 1994-540X
DOI: 10.3923/aja.2010.22.31